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ABSTRACT Engineering and science disciplines make use of genetic algorithms, A number of geretic-based search
paradigms have been developed and applied w different problems. A growing demand for algorithms to solve new problems
and a never-ending process of designing algorithms strongly suggests the need for more efficient and more robust genetic-
based optimisation techniques. Ideally these algorithms should make few assumptions regarding the objective functions and
use as little domain knowledge as possible. In this paper, different genetic-based search paradigms including the standard
GA, the messy GA and the fast messy GA are compared for the discrete opumisation of pipeline networks.

1. INTRODUCTION

Design of pipeline networks mvolves selecting pipe
sizes from a set of commercially available pipe sizes. It
is a discrete optimisation  problermn.  The  discrete
optimisation problem appears to be easter to solve than
the continuous one because fewsr possible solutions
exist. In general. however, it is more difficult to solve.
This is due to the fact that the discrete design space is
non-differentiable  and  nonconvex. The standard
gradient-bused programming techniques and optimality
criteria cannot be applied directly. A global optimal
solution of the discrete optimisation problem can be
obtained only by an exhaustive search (Arora et al
1994). The genetic algorithm is prover to be robust for
the optimisation of pipgline nstworks but  usually
requires  a  large number of function evaluations
{Simpsen et al. 1994; Dandy et al. 1996),

Genetic-based search techniques have been developed
t0 expleit the information (fitness andfor objective
function value) gathered from samples taken from the
search spuce. The space is guanufied by different
regions, The algorithms use the information to decide
which region to explore next. In other words, the search
space can be seen as being classified into different
classes which represent a certain of relations between
samples. Thus, the search space 15 decomposed into
relation space, class space and sample space (Kargupta
1993). For example, for a 4-bit problem, # # # fis a
relation between the samples, where f means fized bi, #
#4 1 and # # # 0 are two classes of the relation, where #
is called don’t-care symbol which can be either O or 1,
DUIG and 1110 are two samples of class # # # O
Searching for an optimum 15 to search for right relation
and class.

A standard geneuc algorithm (3GA) (Holland 1973)
searches for relations and classes implicitly. The sGA
population combines the relation space, class space and
sumple space ali together. This results in sGA belng a
poor search for relations. The messy GA (Goldherg et al.
19RO} is designed to search for the relations and classes
by using & an explicitly
enumerative splice

variable-lenpth  genotype,

initialisation,  cur  and genetic
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operator. However, the originai messy GA usually
requires a large aumber of members in the inital
population. It is difficult to apply the original mGA to a
highly dimensional problem. A fast messy GA (Goidberg
et al. 1993), using a probabilistcally complete
initialisation and building block filtering process, was
introduced to eliminate this bottleneck. In this paper, the
messy GA and the fast messy GA are applied to the
optimisation of design of pipeline networks. The
efficiency of the messy GAs are compared with standard
GA paradigms.

2. STANDARD GENETIC ALGORITHMS

The standard genetic algorithm  (Holland  19735;
Goldberg 1989} is characterised by using a fixed length
genotype  representaiion,  crossover  eperators  and
mutation operator. It considers the relations defined by
the fixed-length representation (binpary bius or many
others). It is possible 1o define a richer source of
relations through representation. However, a sGA
crossover favours those relations in which positions in
sequence space are closer to each other and neglect those
relations that contain positions far apart, This is usuvally
called the linkage problem. A random mutation of the
sample string also results in the disrupting proper
evaluation of the relations, The sGA is not able o
accomplish proper search in the relation space and has
the major problems as (Kargupta 1995):

o Relation, class, and sumple space wre combined.
2 Only a poor search for relation can occur.

Since the relation, class, and sample space are
combined, the decision procesg hecomes noisy and
susceptible to error. The sGA does not have any way to
explicitly decide about relation or classes.

3. MESSY GENETIC ALGORITHMS
A messy genetic algorithm (mGA) was developed 1o

solve bounded difficult search problems (Goldberg, Deb
& Korb 1989, 1990}, which most likely lead o simple



GA search to a local optimum. The mGA allows the
variable-length string to be used and each bit has
attached a tag usually the order of the bit in a string. This
tflexible coding scheme usuvally  generates an
underspecified string in which some bits are missed or an
overspecified string in which more than one value is
specified for one bit. The underspecified string can be
filled in by using a competitive template, while the
overspecified string is reduced by using first-come-first
served ruie scanning from left to right. This variable
locus representation solves the finkage prablem.

The messy GA uses explicitly enumerative initialis-
ation and two main operators namely thresholiing
selection, cut and splice operator.

Explicitly enumerative initialisation

At least one copy of all possible building blocks of a
specified tength k is provided. The initialisation of the
messy GA is not exactly random. Rather, it provides all
possible order-k equivalence classes (building blocks) in
the initial poputation.

Thresholding selection

Comparing strings makes sense only when they are
from the same relation. Thresholding selection tries to
ensure that only classes belonging to a particular relation
compete with each other. A sismlarty measure 9 is used
to denote the number of common genes among two
strings. - Two string are allowed to compete with each
other i the @ is greater than a threshold value.

Cut and splice

Genetic operators, cur and splice, have been designed
and used for the mGA instead of crossover and mutation
as in the simple GA. Cuf divides chremosome into two,
while splice tinks two chromosomes as one individual, A
cut operation s activated by a cut probability P.= Pg{/-
1), where Py is the specified bitwise cut probability, and
{15 the length of the string. Splicing is initiated by a
prescribed probability Py

4. LESSONS FROM THE MESSY GENETIC
ALGORITHM

Explicit enumeration of the classes and selection in

the presence of thresholding aid precise evaluation and
ordering of classes. This makes the messy GA more
applicable than the sGA to a farge class of problems, The
advantages of a mGA are as follows.
{1} It decomposes the search space into the sample space
—template space, and the class and relation space——the
population strings. During the primordial phase every
string in the population has o length less than the
problem length. Bach of them defines a class. Therefore,
the strings in the primordial stage represent the class
space. ln the meantime, the tempiate i always a full
string and defines the sample space in the mGA.
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(2) Less noise occurs in decision making in the mGA
compared to the sGA. Since the main decision making in
the mGA is made during the primordial stage,
decomposition of the search space into the class spac‘e
and relation space makes the decision less noisy when
compared to sGA.

(3} A beteer search relation can be achieved, The search
for a proper relation in the mGA is more accurate and
less susceptible to error because of the explicit
enumeration and the use of a local optimum as a
ternplate for class evaluation.

Despite these advantages, the main problem for the
mGA s explicit enumeraton of the building blocks. Ir
prevents the mGA from being applied o highly
dimensionai problems. An improvement is the fast messy
penetic algorithm (FmGA) that preserves the mGA search
for good relations but provides the benefit of implicit
parallelism.

5. FAST MESSY GENETIC ALGORITHM -

The fast messy GA (Goldberg et al. 1993} replaces the
explicitly enumerative initialisation by employing pro-
babilistcially complete initialisation and a building-block
filtering process.

FProbabilistcially complete initialisation

The idea of the probabilistically complete
initialisation is that all the classes can be defined using a
much smaller number of strings, when the string length is
much higher than & (the order of building biocks). In
other words, multiple combinations of classes can be
defined by the same string. This reduces the initial
population size from O(f) to O(}), and consequently
improves the search efficiency. The initialisation scheme
generates a population of O of strings of length I = (/
- &) for gene filtering process.

Building-block filtering process

The building-block filtering process offers a way for
gradually detecting 2 certain order-k classes from string
length " During this stage, a string is selected in the
presence of thresholding and genes are randomly deleted
by reducing the string length from !’ 1o k.

6. MESSY GA APPLICATIONS TO PIPELINE
METWORKS

6.1 The Two Reservoir Network

A newwork with two  water supply sources and
fourteen pipes, studied by Simpson et al. (1994) as
shown is Figure i, has been chosen for this study. A
complete analysis has been carried out previously by
applying complete enumeration, linear programming,
non-finear programming and the standard GA (Simpson
et al. 1994, Simpson & Goldberg 19943 The global



optimum solution and a set of ranked solutions for this
problem was found by using discrete pipe sizes using
complete enumeration of every alternative. The results
from the previous studies provide an excellent example
for comparing  the performance of the messy GA
approach with the standard GA approach.

The network containg two reservoirs, five new pipes
to be sized, and nine existing pipes-three of which may
be rehabilitated by a pipe in parallel (referred to
duptication although a different diameter may actually be
selected), cleaning or alternatively left as they are. In
Figure [, solid lines represent the existing system, and
dashed lines represent the paris of the system where pipe
links {1}, {4] and [5] may be rehabilitated, und pipe links
161, 181, [11L [13] and [14] that are 10 be sized with at
least a mimmum diameter pipe. Table I gives the pipe
costs and available diameters. Three demand cases
including two fire loading cases and one peak day

loading case and the associated minimum allowable
pressure heads are shown in Table 2.

Table 1 Available Pipe Sizes and Associated Costs for
the Two Reservoir Metwork

Diam. | Costfora Cost for a pipe in Cost for

{mm) new pipe parallel to an cleaning a
($/m) existing pipe (8/m) { pipe ($/m)

152 49.54 49.54 47.57
203 63.32 63.32 51.51
254 94.82 94.82 55.12
305 132.87 132.87 58.07
356 170.93 170.93 6076
407 194 88 19488 63.00
458 232.94 232.94 -

509 264.10 26410 -

Tahle 2 Demand Patterns and Asseciated Minimuom Allowable Pressures for the Two Reservoir Network

Node Demand Pattern | Demand Pattern 2 Demand Pattern 3
Demand IMinimum allowable {Demand {Minimum allowable i Demand {Minimmum allowable
{1L/s) pressure head (my  [(L/s) pressure head (m) (1/s) |pressure head (m)

2 12.62 2818 12.62 14.09 12.62 14.09
3 12.62 17.601 12.62 14.09 12.62 14.09
4 0 17.61 0 14.09 0] i4.09
6 18.93 35.22 18.93 14.09 18.93 14.09
7 18.93 35.22 82.03 10.57 18.93 14,04
8 1893 35.22 18.93 14.09 18.93 14.09
9 12.02 3522 12.62 14.09 12.62 14,09
10 18,93 3522 18,93 14.069 18.93 14.09
I 18.93 33.22 i5.93 14.09 18.93 14.09
12 12.62 35.22 12.62 14.09 50.48 10).57

Table 3 Population Sizes of Messy Genetic Algorithms for Optimisation of the Two Reservoir Network

Messy GAs Original messy GA Fast messy GA
Fras era l era 2 era 3 era 1 era 2 era 3
Initialisation 300 435 4060 60 66 60
Juxtapositional 150 150 150 150 15G 150

6.2 Messy G4 Coding, Decoding and Parameters

A genotype representation and the fitness formulation
by Wu and Simpson {1996} have been used in this study.
Three binary bits have been used (o represent each pipe
size variable for the five new pipes and three existing
pipes to represent & possible choices of pipe sizes. Two
binary bits have been used for cach existing pipe o
represent 3 possible choices of rehabiitation actions that
inctude cleaning, leaving or duplicating an existing pipe.
Thus 30 bits are needed for solving the problem by using
the discrete diameter formulation. A decoding and

mapping scheme from genotype to phenoiype for

optinisation  of design and  rehabiliation of  water
distribution systems is given by Wu and Simpson (19948},
The penalty factor for pressures which do not meet the
minimum ablowable pressure consiraints for this problem
was chosen 1o be $5000/m of deficit 1o match the value
taken by Simpson et al. {1994). Table 3 shows the
population sizes used by the original and fast messy GA.
The other parameters are splice probability P, = 1.4, cut
probability £, = 0.017, Mutation Probability /2, = (.01
and maximum generations ¥ =10,
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Figure 1 The Two Reservoir Network (from Simpson ef al. 1994)

6.3 Resulis and Comparison

The optimum discrete solution for this problem was
found by the messy GAs with different random seeds and
compared with the standard GA results {Simpson et al.
1994, Simpson & Goldberg 19%4) as in Tabie 4. Typical
convergence rates of the messy GA with the seed 0.7 are
respectively  given for using explicitly enumerative
initiahisation and probablistically complete mitialisation
in Figure 2.

As shown in the Table 4, the fast messy GA is the
most efficient at scarching for the global optimal solution
of discrete opumisation of pipeline networks, The messy
GAs have ftound the lowest cost solution {globat
optimum} In each of the 10 runs with ditferent random
seeds. The numbers of original mGA evaluations needed
for achieving the global optimal solution are less than for
the standard GA. The messy GA using enumerative
inttiafisation required only one third o half of the
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evatuation numbers of the standard GA (Simpson et al.
1994), and also less than the GA with tournament
selection (selection pressure s = 2). Simpson aad
Goldberg (1994) observed that increasing tournament
pressure (s = 35) for the standard GA could reduce the
number of evaluations, and thus improve the search
efficiency, but too much pressure (5 =20) might lead the
search to a focal optimal. The fast messy GA, using
probabilistically complete initialisation and  building
block filtering process, has further reduced the number of
the evaluations, being approximately one third of the
evaluation numbers of the original messy GA

Most of the evaluations in the onginal messy GA have
been taken by the explicitly enumerative initialisation. It

requires k-bit strings of 21‘[!} which provide all
k

possible combinations of building blocks of order &,
where / ({ = 30 for the two reservoir network) is the



length of a string representing the problem. The original
messy GA started the first era evolunon with order 1, that
18, one-bit combinations. 300 one-bit strings were
generated by explicitly enumerative mmtialisation and
evaluated by using a randomly generated gene string as a
competitive template. The messy GA was followed by a
primordial phase. During this stage, the genotypes were
selected by performing the thresholding selection only,
which enriches the highly fit strings in the population.
Meanwhile the population size was reduced to [50 at the
end of primordial phase for era 1. The next step was the
Juxtapositional phase, in which messy genetic operations
such as cur and splice are applied to reproduce next
generation. in the second era. 433 two-bit strings were
initialised with order 2 butlding blocks and evaluated by
using the best sofution as the competitive template from
the first era. For the third era, 4060 thres-bit strings were
inizalised by partially complete enumeration with order
3. The number of evaluations required for the jnitial
population for all 3 eras is more than 50% of the total
number ot evaluations. In general, the number of initial
strings required by the original mGA is of O 3. This
disadvantage has been overcome in the fast messy GA.

The fast messy GA employed the probabilistically
complete initialisation and the building block filtering
process. The initialisation just reguired a population of
O(!) of string fength (/- &), The fast mGA started the first
era (order | with £ =1) with 60 strings of 29-bit strings. It
wis followed the huilding block liltering process, in
which the sirings are cut in half every generation and
evaluated by using a random template. Members for the
next generation were selecied by thresholding selection.
The building block filtering process continues until the
string length is equal to 1. The population size was
increased to 150 at the end of building block filtering
process. As for the original messy GA, it was  then
followed by the juxitapositional phase. For the second
and the third eras the same population size as for the first
era was used except the building block filtering was
carried out for order 2 and order 3 respectively. Thus, the
fast messy GA overcomes the bottleneck of the original
messy GA and provides a more efficient search algorithm
for the discrete optimisation of the pipeline networks.

7. COMCLUSBIONS

The standard GA defines the relations and classes
implicitly by using a f{ixed-length representation. It
combines the relation space, class space and sample
space all together. thus a poor and noisy decision process
oceurs. Increasing the tournament selection pressure can
improve the search efficiency, bul too much pressure
may leads the search to a loca! optimal.

Messy  GAs emphasise searching for appropriate
refations. The original messy GA uses a compeliive
template and explicit enumeration of good classes
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buiiding-blocks—to ensure correct decision making.
However, using an inttialisation procedure  where
buiiding-blocks are explicitly enumerated essentially
limits the messy GA to be applied to a highly
dimensional problem. The probabilistcally complete
initialisation and the building-block filtering process are
introduced into the fast messy GA to detect better classes
from better relazions. The application of the messy GA to
optimisation of pipeline networks in the case study in this
paper shows that the fast messy GA is the most efficient
algorithm among the genetic-based search paradigms. It
eliminates the major bottleneck of the original messy GA
—the exphcitly enumerative initialisation and thus
provides a promising optimisation algorithm for solving

highly dimensional discrete optimisation problems.
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Table 4 Results of Comparison of GA Paradigms for the Two Reservoir Network

Standard Genetic Algarithms Messy Genetic Algorithms
Roulette wheel selection Tournament selection Explicitly enumrerative Probabilistically
(Simpson et al, 1994) {Simpson & Goldberg 1594) initialisation (Wua & | complete initialisation
(N=100, Pc =0.9; Pm=0.02)| {N=1000; Pc=05; Px=05; Pm =00} Simpson 1996)
Cost {(m$)  jAchievedat Cost Achieved at Cost | Achieved at Cost | Achieved at
Run} (% difference | evajuation | ($m) evaluation number (3m) evaluation | ($m) | evaluation
No.| from optimum} nurnker s=2) (s =5} nurber number
1| 17910 (2.3%;) 23,400 17503 9,000 4,000 17503 6,148 17503 LHZ
2 1.7503% 10,350 1.7503 9,500 4.000 1.7503 0,148 17303 2,243
3 LBAIT(5.2%) 22,410 1.7503 8,500 4,500 1.7503 6,148 1.7503 1,833
4 1 LR35 1) 15,660 17503 9,500 3,500 1.7503 8,938 1.7503 3,004
5 1.7503 17,190 17503 8,000 4,500 1.7503 2,957 1.7503 4,033
O 1.7503 11,0670 17503 8,000 5,000 1.7503 2,522 1.7503 2,722
7 17503 10,080 17503 8,000 4,000 1.7503 8,758 1.7593 3,053
8 | 1.7999 (2.8%) 4410 1.7503 7,500 4,500 17303 10,642 17503 2,622
) 1.7503 12,510 1.7503 10,600 4,000 1.7503 3977 1.7503 1,622
10 17503 19,890 1.7503 10,0600 3,000 1.7503 6,148 1.7503 1,722
Average 14,697 3,800 4,300 6,181 2,400
*The global optimum solution
Messy GAs optimisation (random seed = 0.7}
3.5
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3041
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Figure 2 Comparison of Generation Best Cost for Messy Genetic Algorithm Optimisation of the

Two Reservoir Problem
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